什么函数的导数是arctanx

什么函数的导数是arctanx

以下是关于什么函数的导数是arctanx的介绍

什么函数的导数是arctanx

什么是导数 导数怎么求 什么是导数

导数是数学学习中一个常用的定义,若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续,不连续的函数一定不可导。下面小编为大家详细介绍一下。

导数公式

y=f(x)=c (c为常数) 则f'(x)=0

f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

f(x)=e^x f'(x)=e^x

f(x)=logaX f'(x)=1/xlna(a>0且a不等于1,x>0)

f(x)=lnx f'(x)=1/x(x>0)

f(x)=tanx f'(x)=1/cos^2x

f(x)=cotx f'(x)=-1/sin^2x

导数运算法则

加法法则:(f(x)-g(x))'=f'(x)+g'(x)

减法法则:(f(x)+g(x))'=f'(x)-g'(x)

乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

导数定义

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。

需要指出的是:

两者在数学上是等价的。

含三角函数的导数问题 三角函数的导数

三角函数的导数有:(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x=1+tan²x。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

三角函数的导数公式有

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=sec²x=1+tan²x

(cotx)'=-csc²x

(secx)'=tanx·secx

(cscx)'=-cotx·cscx.

(tanx)'=(sinx/cosx)'=[cosx·cosx-sinx·(-sinx)]/cos²x=sec²x

基本的求导法则

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。

2、两个函数的乘积的导函数:一导乘二+一乘二导。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。

4、如果有复合函数,则用链式法则求导。

(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

arcsinα的导数 arcsinx的导数

arcsinx的导数是:y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²),此为隐函数求导。

推导过程

y=arcsinx y'=1/√(1-x²)

反函数的导数:

y=arcsinx,

那么,siny=x,

求导得到,cosy*y'=1

即y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²)

隐函数导数的求解

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

反三角函数

反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为arcsinx,arccosx,arctanx,arccotx,arcsecx,arccscx。但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。

为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的y值都只能有惟一确定的x值与之对应。

arctana/x的导数 arctanx的导数是什么

arctanx的导数:y=arctanx,x=tany,dx/dy=sec²y=tan²y+1,dy/dx=1/(dx/dy)=1/(tan²y+1)=1/(1+x²)。

证明过程三角函数求导公式

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(|x|(x^2-1)^1/2)

(arccscx)'=-1/(|x|(x^2-1)^1/2)

反函数求导法则

如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f−1(x)y=f−1(x)在区间Ix={x|x=f(y),y∈Iy}Ix={x|x=f(y),y∈Iy}内也可导,且

[f−1(x)]′=1f′(y)或dydx=1dxdy

[f−1(x)]′=1f′(y)或dydx=1dxdy

这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。

例:设x=siny,y∈[−π2,π2]x=sin⁡y,y∈[−π2,π2]为直接导数,则y=arcsinxy=arcsin⁡x是它的反函数,求反函数的导数.

解:函数x=sinyx=sin⁡y在区间内单调可导,f′(y)=cosy≠0f′(y)=cos⁡y≠0

因此,由公式得

(arcsinx)′=1(siny)′

(arcsin⁡x)′=1(sin⁡y)′

=1cosy=11−sin2y−−−−−−−−√=11−x2−−−−−√

=1cos⁡y=11−sin2⁡y=11−x2

2的2x次方的导函数 2的x次方的导数

2的x次方的导数:求导公式为(a^x)'=a^x㏑a。故(2^x)'=2^x㏑2。这是指数函数的导数。

基本的求导法则

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。


关于更多什么函数的导数是arctanx请留言或者咨询老师

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:什么函数的导数是arctanx
本文地址:http://wap.55xw.net/show-414209.html
本文由合作方发布,不代表职业教育网立场,转载联系作者并注明出处:职业教育网

热门文档

推荐文档